Université de Liège Réseau des Bibliothèques

BICTEL/e - ULg
Serveur institutionnel des thèses de doctorat



Nouvelles thèses
dans BICTEL/e - ULg
  • Palm, Mélanie - Etude de la faculté des protéines MX porcines à conférer une résistance contre le virus influenza A et contribution à l'identification du mécanisme impliqué
  • Dermine, Martin - TESTING CANDIDATE EFFECTORS CONTRIBUTING TO RESISTANCE TO PNEUMOVIRUSES
  • Cantinieaux, Dorothée - Le milieu conditionné de cellules souches mésenchymateuses: une alternative prometteuse à la transplantation de cellules souches mésenchymateuses après lésion de la moelle épinière
Présentation Recherche thèse Dépôt thèse Accès
gestionnaires
 
Page de résumé pour ULgetd-01262009-115409

Auteur : Sarlette, Alain
E-mail de l'auteur : Alain.Sarlette@ulg.ac.be
URN : ULgetd-01262009-115409
Langue : Anglais/English
Titre : Geometry and Symmetries in Coordination Control
Intitulé du diplôme : Doctorat en sciences de l'ingénieur
Département : FSA - Département d'électricité, électronique et informatique
Jury :
Nom : Titre :
AEYELS, Dirk Membre du jury/Committee Member
BLONDEL, Vincent Membre du jury/Committee Member
BULLO, Francesco Membre du jury/Committee Member
LECOMTE, Pierre Membre du jury/Committee Member
ROUCHON, Pierre Membre du jury/Committee Member
WEHENKEL, Louis Président du jury/Committee Chair
SEPULCHRE, Rodolphe Promoteur/Director
Mots-clés :
  • systems theory/théorie des systèmes
  • manifolds/variétés géométriques
  • Lie groups/groupes de Lie
  • synchronization/synchronisation
  • consensus
  • attitude control
Date de soutenance : 2009-01-06
Type d'accès : Public/Internet
Résumé :

The present dissertation studies specific issues related to the coordination of a set of "agents" evolving on a nonlinear manifold, more particularly a homogeneous manifold or a Lie group. The viewpoint is somewhere between control algorithm design and system analysis, as algorithms are derived from simple principles --- often retrieving existing models --- to highlight specific behaviors.

With a fair amount of approximation, the objective of the dissertation can be summarized by the following question:

Given a swarm of identical agents evolving on a nonlinear, nonconvex configuration space with high symmetry, how can you define specific collective behavior, and how can you design individual agent control laws to get a collective behavior, without introducing hierarchy nor external reference points that would break the symmetry of the configuration space?

Maintaining the basic symmetries of the coordination problem lies at the heart of the contributions. The main focus is on the global geometric invariance of the configuration space. This contrasts with most existing work on coordination, where either the agents evolve on vector spaces --- which, to some extent, can cover local behavior on manifolds --- or coordination is coupled to external reference tracking such that the reference can serve as a beacon around which the geometry is distorted towards vector space-like properties. A second, more standard symmetry is to treat all agents identically.

Another basic ingredient of the coordination problem that has important implications in this dissertation is the reduced agent interconnectivity: each agent only gets information from a limited set of other agents, which can be varying.

In order to focus on issues related to geometry / symmetry and reduced interconnectivity, individual agent dynamics are drastically simplified to simple integrators. This is justified at a "planning" level. Making the step towards realistic dynamics is illustrated for the specific case of rigid body attitude synchronization.

The main contributions of this dissertation are

* I. an extensive study of synchronization on the circle, (a) highlighting difficulties encountered for coordination and (b) proposing simple strategies to overcome these difficulties;

* II. (a) a geometric definition and related control law for "consensus" configurations on compact homogeneous manifolds, of which synchronization --- all agents at the same point --- is a special case, and (b) control laws to (almost) globally reach synchronization and "balancing", its opposite, under general interconnectivity conditions;

* III. several propositions for rigid body attitude synchronization under mechanical dynamics;

* IV. a geometric framework for "coordinated motion" on Lie groups, (a) giving a geometric definition of coordinated motion and investigating its implications, and (b) providing systematic methods to design control laws for coordinated motion.

Examples treated for illustration of the theoretical concepts are the circle S^1 (sometimes the sphere S^n), the rotation group SO(n), the rigid-body motion groups SE(2) and SE(3) and the Grassmann manifolds Grass(p,n). The developments in this dissertation remain at a rather theoretical level; potential applications are briefly discussed.

Autre version : http://www.montefiore.ulg.ac.be/~sarlette/Data/as_FullPhD_toprint.pdf
Fichiers :
Nom du fichier Taille Temps de chargement évalué (HH:MI:SS)
Modem 56K ADSL
[Public/Internet] AS_Thesis_ElectronicVersion.pdf 3.30 Mb 00:07:51 00:00:17
[Public/Internet] AS_Thesis_ForPrinting.pdf 2.39 Mb 00:05:41 00:00:12

Bien que le maximum ait été fait pour que les droits des ayants-droits soient respectés, si un de ceux-ci constatait qu'une oeuvre sur laquelle il a des droits a été utilisée dans BICTEL/e ULg sans son autorisation explicite, il est invité à prendre contact le plus rapidement possible avec la Direction du Réseau des Bibliothèques.


Parcourir BICTEL/e par Auteur|Département | Rechercher dans BICTEL/e


© Réseau des Bibliothèques de l'ULg, Grande traverse, 12 B37 4000 LIEGE