Université de Liège Réseau des Bibliothèques

Serveur institutionnel des thèses de doctorat

Nouvelles thèses
dans BICTEL/e - ULg
  • Marquet, Manon - Examining consequences of ageism on older adults and how ageist attitudes differ across cultural and socio-economic contexts
  • Shevchouk, Olesya Taisia - Steroid-dependent and -independent control of singing motivation and neural plasticity in a seasonal songbird
  • Dupuis, Nadine - Identification of chemical probes and signaling pathways for the orphan GPCR GPR27/Identification de modulateurs pharmacologiques et des voies de signalisation du RCPG orphelin GPR27
Présentation Recherche thèse Dépôt thèse Accès
Page de résumé pour ULgetd-02012012-170142

Auteur : Calusinska, Magdalena
E-mail de l'auteur : mcalusinska@ulg.ac.be
URN : ULgetd-02012012-170142
Langue : Anglais/English
Titre : Application of molecular tools to study the hydrogen production by the bacteria of the genus Clostridium
Intitulé du diplôme : Doctorat en sciences
Département : FS - Département des sciences de la vie
Jury :
Nom : Titre :
Giudici-Orticoni, Marie-Terese Membre du jury/Committee Member
Joris, Bernard Membre du jury/Committee Member
Mergeay, Max Membre du jury/Committee Member
Remacle, Claire Membre du jury/Committee Member
Thonart, Philippe Membre du jury/Committee Member
Piette, Jacques Président du jury/Committee Chair
Wilmotte, Annick Promoteur/Director
Mots-clés :
  • hydrogen production/clostridium/dark fermentation
Date de soutenance : 2012-02-24
Type d'accès : Restreint/Intranet
Résumé :

Molecular hydrogen has a tremendous potential as a future energy carrier due to its pollution free combustion. However, current industrial hydrogen production processes contribute to the greenhouse effect. In contrast, a CO2 neutral H2 production using renewable energy sources can be obtained during dark anaerobic fermentation. Bacteria of the genus Clostridium can ferment sugars to H2 and CO2 with acetic and butyric acid as the main electron sinks. However, depending on the strain/bacterial co-culture and environmental conditions, more reduced products can be obtained e.g. ethanol, lactate, what reduces substantially the final H2 yield. Additionally, the different metabolic pathways and the regulatory circuits leading to H2 production in clostridia are not well resolved.

In this study, we focused our research on two main topics. On one hand, we investigated different bacterial co-cultures composed of Clostridium spp. in different H2-producing bioreactors. By monitoring the co-cultures of C. butyricum and C. pasteurianum with FISH (Fluorescence in situ hybridisation) and qPCR (quantitative real-time PCR), we have shown that both species stably co-existed during fermentations of different sugars in two different bioreactors. On the other hand, by using Clostridium butyricum CWBI1009 as a model species, we aimed to resolve the complex H2 metabolism in clostridia. The discovery of multiple novel [FeFe] hydrogenase genes in the sequenced genomes changed our perspective on how these microbes produce H2. Indeed, using different molecular tools, e.g. 2D-DIGE, RT-qPCR and RNA-seq, we have shown that in different environmental conditions, different hydrogenases may contribute to H2 production. Additionally, under N2 atmosphere during glucose fermentation in non-regulated pH conditions, for the first time in clostridia, nitrogenase was proposed to contribute to the overall H2 production. Surprisingly, despite the fact that clostridia seem to be perfectly equipped to produce hydrogen, they probably developed this capacity to quickly adapt to the changing conditions, namely decreasing pH value. We concluded that, in order to maintain a constant pH inside the cell, they excrete protons (presumably in form of H2) into the medium. At the same time, they get rid of the excessive reducing equivalents produced during glucose fermentation.

Altogether, the obtained results shed more light on the complex hydrogen metabolism in clostridia. Nevertheless, a challenge ahead is to characterize the key enzymes of hydrogen metabolism and, by means of metabolic bioengineering, to develop optimal microbial systems for biomass conversion to hydrogen.

Autre version : http://hdl.handle.net/2268/109855
Fichiers :
Nom du fichier Taille Temps de chargement évalué (HH:MI:SS)
Modem 56K ADSL
[Restreint/Intranet] PhDThesisabstractMCalusinska.pdf 152.06 Kb 00:00:21 < 00:00:01
[Restreint/Intranet] PhDthesisMCalusinska.pdf 35.62 Mb 01:24:47 00:03:09
Fichiers accessibles par l'Internet [Public/Internet] ou que par l'Intranet [Restreint/Intranet].

Bien que le maximum ait été fait pour que les droits des ayants-droits soient respectés, si un de ceux-ci constatait qu'une oeuvre sur laquelle il a des droits a été utilisée dans BICTEL/e ULg sans son autorisation explicite, il est invité à prendre contact le plus rapidement possible avec la Direction du Réseau des Bibliothèques.

Parcourir BICTEL/e par Auteur|Département | Rechercher dans BICTEL/e

© Réseau des Bibliothèques de l'ULg, Grande traverse, 12 B37 4000 LIEGE