Université de Liège Réseau des Bibliothèques

BICTEL/e - ULg
Serveur institutionnel des thèses de doctorat



Nouvelles thèses
dans BICTEL/e - ULg
  • Lambert, Justine - Implication de la Transition Epithélio-Mésenchymateuse dans la coagulation et les étapes précoces de la dissémination métastatique.
  • Donati, Kim - Impact des modulations du microenvironnement et de la niche prémétastatique dans l’émergence des métastases pulmonaires.
  • Jeunehomme, Olivier - Temporal compression of events in episodic memory/La compression temporelle des événements en mémoire épisodique
Présentation Recherche thèse Dépôt thèse Accès
gestionnaires
 
Page de résumé pour ULgetd-08202013-114212

Auteur : Lemaire, Etienne
E-mail de l'auteur : ET.Lemaire@student.ulg.ac.be
URN : ULgetd-08202013-114212
Langue : Anglais/English
Titre : Topology optimization of electrostatic MEMS including stability constraints
Intitulé du diplôme : Doctorat en sciences de l'ingénieur
Département : FSA - Département d'aérospatiale et de mécanique
Jury :
Nom : Titre :
Bechet, Eric Membre du jury/Committee Member
Denoel, Vincent Membre du jury/Committee Member
Dular, Patrick Membre du jury/Committee Member
Gilet, Tristan Membre du jury/Committee Member
Rochus, Véronique Membre du jury/Committee Member
Sigmund, Ole Membre du jury/Committee Member
Van Keulen, Fred Membre du jury/Committee Member
Golinval, Jean-Claude Président du jury/Committee Chair
Duysinx, Pierre Promoteur/Director
Mots-clés :
  • Pull-in instability
  • Design d''actionneurs
  • Actionnement électrostatique
  • Actuator design
  • Optimisation topologique
  • Electrostatic actuation
  • Instabilité de Pull-in
  • Topology optimization
  • MEMS
Date de soutenance : 2013-08-26
Type d'accès : Public/Internet
Résumé :

Among actuation techniques available for MEMS devices, electrostatic actuation is often used as it provides a short response time and is relatively easy to implement. However, these actuators possess a limit voltage called pull-in voltage beyond which they are unstable. The pull-in effect, can eventually damage the device since it can be impossible to separate the electrodes afterward. Consequently, pull-in phenomenon should be taken into account during the design process of electromechanical microdevices to ensure that it is avoided within utilization range. In this thesis, a topology optimization procedure which allows controlling pull-in phenomenon during the design process is developed.

A first approach is based on a simplified optimization problem where the optimization domain is separated from the electrical domain by a perfectly conducting material layer making the optimization domain purely mechanical. This assumption reduces the difficulty of the optimization problem as the location of the electrostatic forces is then independent from the design. However, it allows us to develop and validate a design function based on pull-in voltage in the framework of a topology optimization problem.

Nevertheless, in some applications, the developed pull-in voltage optimization procedure suffers from design oscillations that prevent from reaching solution. In order to solve this issue, we propose to investigate an alternative approach consisting in formulating a linear eigenproblem approximation for the nonlinear stability problem. The first eigenmode of the proposed stability eigenproblem corresponds to the actual pull-in mode while higher order modes allow estimating upcoming instability modes. By including several instability modes into a multiobjective formulation, it is possible to circumvent the oscillations encountered with pull-in voltage design function.

Next, the possibility to generalize the pull-in optimization problem by removing the separation between optimization and electrostatic domains is studied. Unlike the original method, the dielectric permittivity has then to depend on the pseudo-density like the Young Modulus to represent the different electrostatic behavior of void and solid. Additionally, in order to render perfect conducting behavior for the structural part of the optimization domain, a fictitious permittivity is also introduced into the material model. Difficulties caused by non-physical local instability modes could be solved by using a force filtering technique which removes electrostatic forces originating from numerical inaccuracies of the modeling method. Thanks to these improvements, the optimization problem based on the pull-in design function can be generalized. As a result, the optimizer is able to adapt the electrostatic force distribution applied on the structure which leads to a higher efficiency of the optimal device.

In order to illustrate the interest of the pull-in voltage design function, the pull-in voltage optimization problem is merged with the electrostatic actuator optimization problem. In this new optimization problem, the pull-in voltage does not appear anymore in the objective function but in a constraint which prevents the pull-in voltage to decrease below a given minimal value. Firstly, the new optimization problem is compared to the basic electrostatic actuator design procedure on basis of a numerical application. The pull-in voltage constraint proved to be very useful since it prevents the pull-in voltage of the mechanism to decrease below the driving voltage during the optimization process. Finally, the effect of geometric nonlinearity modeling is also tested on numerical applications of our optimization procedure.

Autre version : http://hdl.handle.net/2268/154574
Fichiers :
Nom du fichier Taille Temps de chargement évalué (HH:MI:SS)
Modem 56K ADSL
[Public/Internet] these-e-0.1.pdf 11.43 Mb 00:27:12 00:01:00

Bien que le maximum ait été fait pour que les droits des ayants-droits soient respectés, si un de ceux-ci constatait qu'une oeuvre sur laquelle il a des droits a été utilisée dans BICTEL/e ULg sans son autorisation explicite, il est invité à prendre contact le plus rapidement possible avec la Direction du Réseau des Bibliothèques.


Parcourir BICTEL/e par Auteur|Département | Rechercher dans BICTEL/e


© Réseau des Bibliothèques de l'ULg, Grande traverse, 12 B37 4000 LIEGE