Université de Liège Réseau des Bibliothèques

BICTEL/e - ULg
Serveur institutionnel des thèses de doctorat



Nouvelles thèses
dans BICTEL/e - ULg
  • André, Cédric - Audiovisual spatial congruence, and applications to 3D sound and stereoscopic video.
  • Mabille, Georges - Analyse de la variabilité naturelle du climat : application à l’aide des ondelettes
  • Stephany, Antoine - Contribution à l'étude numérique de la lubrification en régime mixte en laminage à froid.
Présentation Recherche thèse Dépôt thèse Accès
gestionnaires
 
Page de résumé pour ULgetd-08262010-133538

Auteur : Li, Xiang
E-mail de l'auteur : Xiang.Li@student.ulg.ac.be
URN : ULgetd-08262010-133538
Langue : Français/French
Titre : A natural neighbours method based on Fraeijs de Veubeke variational principle
Intitulé du diplôme : Doctorat en sciences de l'ingénieur
Département : FSA - Département ArGEnCo
Jury :
Nom : Titre :
Degée, Hervé Membre du jury/Committee Member
Guo, Xu Membre du jury/Committee Member
Habraken, Anne-Marie Membre du jury/Committee Member
Kang, Zhan Membre du jury/Committee Member
Li, Xikui Membre du jury/Committee Member
Noels, Ludovic Membre du jury/Committee Member
Ponthot, Jean-Philippe Membre du jury/Committee Member
Zong, Zhi Membre du jury/Committee Member
Yang, Haitian Président du jury/Committee Chair
Cescotto, Serge Promoteur/Director
Mots-clés :
  • Nonlinear solid mechanics
  • Fraeijs de Veubeke variational principle
  • Mixed approach
  • Natural elements
  • Linear solid mechanics
  • Linear elastic fracture mechanics
Date de soutenance : 2010-07-02
Type d'accès : Public/Internet
Résumé :

A Natural nEighbours Method (NEM) based on the FRAEIJS de VEUBEKE (FdV) variational principle is developed in the domain of 2D infinitesimal transformations. This method is firstly applied to linear elastic problems and then is extended to materially

nonlinear problems and problems of linear elastic fracture mechanics (LEFM). In all these developments, thanks to the FdV variational principle, the displacement field, the

stress field, the strain field and the support reaction field are discretized independently. In the spirit of the NEM, nodes are distributed in the domain and on its contour and the

corresponding Voronoi cells are constructed. In linear elastic problems the following discretization hypotheses are used:

1. The assumed displacements are interpolated between the nodes with Laplace functions.

2. The assumed support reactions are constant over each edge of Voronoi cells on which

displacements are imposed.

3. The assumed stresses are constant over each Voronoi cell.

4. The assumed strains are constant over each Voronoi cell.

The degrees of freedom linked with the assumed stresses and strains can be eliminated at the level of the Voronoi cells so that the final equation system only involves the nodal displacements and the assumed support reactions.

The support reactions can be further eliminated from the equation system if the imposed support conditions only involve constant imposed displacements (in particular displacements imposed to

zero) on a part of the solid contour, finally leading to a system of equations of the same size as in a classical displacement-based method.

For the extension to materially non linear problems, similar hypotheses are used. In particular, the velocities are interpolated by Laplace functions and the strain rates are assumed to be constant in each Voronoi cell.

The final equations system only involves the nodal velocities. It can be solved step by step by time

integration and Newton-Raphson iterations at the level of the different time steps.

In the extension of this method for LEFM, a node is located on each crack tip. In the Voronoi cells containing the crack tip, the stress and the strain discretization includes not only a constant term but also additional terms corresponding to the solutions of LEFM for modes 1 and 2. In this approach, the stress intensity coefficients are obtained as primary variables of the solution. The final equations system only involves the nodal displacements and the stress intensity coefficients.

Finally, an eXtended Natural nEighbours Method (XNEM) is proposed in which the crack is represented by a line that does not conform to the nodes or the edges of the cells. Based on the hypotheses used in linear elastic domain, the discretization of the displacement field is enriched with Heaviside functions allowing a displacement discontinuity at the level of the crack.

In the cells containing a crack tip, the stress and strain fields are also enriched with additional terms corresponding to the solutions of LEFM for modes 1 and 2. The stress intensity coefficients are also obtained as primary variables of the solution.

A set of applications are performed to evaluate these developments. The following conclusions can be drawn for all cases (linear elastic, nonlinear, fracture mechanics).

• In the absence of body forces, the numerical calculation of integrals over the area of the domain is avoided: only integrations on the edges of the Voronoi cells are required, for

which classical Gauss numerical integration with 2 integration points is sufficient to pass the patch test.

• The derivatives of the nodal shape functions are not required in the resulting formulation.

• The patch test can be successfully passed.

• Problems involving nearly incompressible materials can be solved without incompressibility locking in all cases.

• The numerical applications show that the solutions provided by the present approach converge to the exact solutions and compare favourably with the classical finite element method. / Une méthode des éléments naturels (NEM) basée sur le principe variationnel de FRAEIJS de VEUBEKE (FdV) est développée dans le domaine des transformations infinitésimales 2D.

Cette méthode est d’abord appliquée aux problèmes élastiques linéaires puis est étendue aux problèmes matériellement non linéaires ainsi qu’à ceux de la mécanique de la rupture élastique

linéaire (LEFM).

Dans tous ces développements, grâce au principe variationnel de FdV, les champs de déplacements, contraintes, réformations et réactions d’appui sont discrétisés de façon indépendante.

Dans l’esprit de la NEM, des noeuds sont distribués dans le domaine et sur son contour et les cellules de Voronoi associées sont construites.

En domaine élastique linéaire, les hypothèses de discrétisation sont les suivantes :

1. Les déplacements sont interpolés entre les noeuds par des fonctions de Laplace.

2. Les réactions d’appui sont supposées constantes sur chaque côté des polygones de Voronoi

le long desquels des déplacements sont imposés.

3. Les contraintes sont supposées constantes sur chaque cellule de Voronoi.

4. Les déformations sont supposées constantes sur chaque cellule de Voronoi.

Les degrés de liberté associés aux hypothèses sur les contraintes et les déformations peuvent être éliminées au niveau des cellules de Voronoi de sorte que le système d’équations final n’implique que les déplacement nodaux et les réactions d’appui supposées.

Ces dernières peuvent également être éliminées de ce système d’équations si les conditions d’appui n’imposent que des déplacements constants (en particulier égaux à zéro) sur une partie du contour du domaine étudié, ce qui conduit à un système d’équations de même taille que dans une approche basée sur la discrétisation des seuls déplacements.

Pour l’extension aux problèmes matériellement non linéaires, des hypothèses similaires sont utilisées. En particulier, les vitesses sont interpolées par des fonctions de Laplace et déformations sont supposées constantes sur chaque cellule de Voronoi.

Le système d’équations final n’implique que les vitesses nodales. Il peut être résolu pas à pas par intégration temporelle et itérations de Newton-Raphson à chaque pas de temps.

Pour l’extension de cette méthode aux problèmes de LEFM, un noeud est localisé à chaque pointe de fissure. Dans les cellules de Voronoi correspondantes, la discrétisation des contraintes et des déformations contient non seulement un terme constant mais aussi des termes additionnels correspondant aux solutions de la LEFM pour les modes 1 et 2.

Avec cette approche, les coefficients d’intensité de contraintes constituent des variables primaires de la solution. Le système d’équations final ne contient que les déplacements nodaux et les coefficients d’intensité de contraintes.

Finalement, une méthode des éléments naturels étendue (XNEM) est proposée dans laquelle la fissure est représentée par une ligne indépendante des noeuds ou des côtés des cellules de Voronoi.

La discrétisation utilisée en domaine élastique linéaire est enrichie par des fonctions de Heaviside qui autorisent une discontinuité des déplacements au niveau de la fissure.

Dans les cellules contenant une pointe de fissure, les contraintes et les déformations sont aussi enrichies par des termes additionnels correspondant aux solutions de la LEFM pour les modes 1 et 2.

Ici aussi, les coefficients d’intensité de contraintes constituent des variables primaires de la solution.

Une série d’applications numériques sont réalisées afin d’évaluer ces développements.

Les conclusions suivantes peuvent être tirées. Elles s’appliquent à tous les cas (élastique linéaire, non linéaire, mécanique de la rupture) :

• En l’absence de force volumique, le calcul numérique d’intégrales sur l’aire du domaine est évité : seules sont nécessaires des intégrales numériques sur les côtés des cellules de

Voronoi. L’utilisation de 2 points de Gauss suffit pour passer le patch test.

• Les dérivées des fonctions d’interpolation nodales ne sont pas nécessaires dans cette formulation.

• La formulation passe le patch test.

• Les problèmes impliquant des matériaux quasi incompressibles sont résolus sans verrouillage.

• Les applications numériques montrent que les solutions fournies par l’approche développée convergent vers les solutions exactes et se comparent favorablement avec celles de la méthode des éléments finis.

Autre version :
Fichiers :
Nom du fichier Taille Temps de chargement évalué (HH:MI:SS)
Modem 56K ADSL
[Public/Internet] Annex1.pdf 143.15 Kb 00:00:20 < 00:00:01
[Public/Internet] Annex2.pdf 156.08 Kb 00:00:22 < 00:00:01
[Public/Internet] Annex3.pdf 152.12 Kb 00:00:21 < 00:00:01
[Public/Internet] Annex4.pdf 779.22 Kb 00:01:51 00:00:04
[Public/Internet] Annex5.pdf 224.62 Kb 00:00:32 00:00:01
[Public/Internet] Annex6.pdf 73.42 Kb 00:00:10 < 00:00:01
[Public/Internet] Begining.pdf 230.48 Kb 00:00:32 00:00:01
[Public/Internet] Chap1Introduction.pdf 220.89 Kb 00:00:31 00:00:01
[Public/Internet] Chap2Backgroundnotionsandstateoftheart.pdf 389.32 Kb 00:00:55 00:00:02
[Public/Internet] Chap3NEMforlinearelasticproblemsbasedonFdV.pdf 510.79 Kb 00:01:12 00:00:02
[Public/Internet] Chap4Extensiontomateriallynonlinearproblems.pdf 404.00 Kb 00:00:57 00:00:02
[Public/Internet] Chap5ExtensiontoLinearElasticFractureMechanics.pdf 515.17 Kb 00:01:13 00:00:02
[Public/Internet] Chap6Extendednaturalneighboursmethod.pdf 479.53 Kb 00:01:08 00:00:02
[Public/Internet] Chap7Conclusion.pdf 55.30 Kb 00:00:07 < 00:00:01
[Public/Internet] Chap8References.pdf 53.04 Kb 00:00:07 < 00:00:01

Bien que le maximum ait été fait pour que les droits des ayants-droits soient respectés, si un de ceux-ci constatait qu'une oeuvre sur laquelle il a des droits a été utilisée dans BICTEL/e ULg sans son autorisation explicite, il est invité à prendre contact le plus rapidement possible avec la Direction du Réseau des Bibliothèques.


Parcourir BICTEL/e par Auteur|Département | Rechercher dans BICTEL/e


© Réseau des Bibliothèques de l'ULg, Grande traverse, 12 B37 4000 LIEGE