Université de Liège Réseau des Bibliothèques

Serveur institutionnel des thèses de doctorat

Nouvelles thèses
dans BICTEL/e - ULg
  • Antonopoulos, Georgios - Machine Learning applications for characterizing brain-damaged patients’ level of consciousness
  • Serrano Navacerrada, Maria Elisa - Implication of the SV2A protein in epilepsy: preclinical studies/Implication de la protéine SV2A dans l'épilepsie: études précliniques
Présentation Recherche thèse Dépôt thèse Accès
Page de résumé pour ULgetd-09302019-093109

Auteur : Antonopoulos, Georgios
E-mail de l'auteur : Georgios.Antonopoulos@uliege.be
URN : ULgetd-09302019-093109
Langue : Anglais/English
Titre : Machine Learning applications for characterizing brain-damaged patients’ level of consciousness
Intitulé du diplôme : Doctorat en sciences biomédicales et pharmaceutiques
Département : Médecine - Département des sciences précliniques
Jury :
Nom : Titre :
BAHRI, Mohamed Ali Membre du jury/Committee Member
BZDOK, Danilo Membre du jury/Committee Member
DEMERTZI, Athina Membre du jury/Committee Member
NOIRHOMME, Quentin Membre du jury/Committee Member
STAMATAKIS, Emmanuel Membre du jury/Committee Member
HUSTINX, Roland Président du jury/Committee Chair
LAUREYS, Steven Promoteur/Director
PHILLIPS, christophe Promoteur/Director
Mots-clés :
  • magnetic resonance imaging
  • imagerie par resonnance magnetique
  • Disorders of consciousness
  • alteration de la conscience
  • Positron Emission Tomography
  • Tomographie a emission de positron
  • functional neuroimaging
  • neuroimagerie fonctionelle
  • Machine Learning
  • Apprentissage automatique
Date de soutenance : 2019-10-03
Type d'accès : Public/Internet
Résumé :

Consciousness is the result of an extremely complicated brain function. The exact functionality of the

brain resulting in consciousness remains unsolved. Combined forces from many different scientific

fields are working on this to get a better understanding on consciousness and its disorders. Medicine,

neuropsychology, mathematics and biology are only a few of those fields. Specifically, the medical

model can provide us with unique insights as to the functions of typical states of consciousness.

This thesis is focusing on patients with disorders of consciousness. This kind of patients are brainlesioned individuals which in numerous cases are incapable of responding to requests, despite the

fact that they might still have preserved conscious functions. Often, the remaining functionality of a

brain is sufficient for perceiving and decoding the surrounding environment or the position of patients

in it. Nowadays, we know that lack of responses do not necessarily indicate lack of consciousness.

Behavioural-assessment scales for the evaluation of consciousness often provide a vague diagnosis.

Mis-diagnosis of consciousness raises clinical as well as ethical issues.

Functional neuroimaging can be used to address this problem by providing an inner overview of the

brain functionality of patients with disorders of consciousness. Functional Magnetic Resonance Imaging and Positron Emission Tomography are two commonly used modalities of functional neuroimaging,

which are used in the projects of this thesis. They provide a quantification of different brain properties

in combination with an accurate spatial representation, which makes them a unique source of information. Machine Learning, being part of the wider Artificial Intelligence field, incorporates algorithms

that can efficiently handle high-dimensional data. Such algorithms can unveil patterns of data and undercover interactions of brain regions, using data-driven approaches. Additionally, they provide tools

that can ensure success in predicting unseen data. Therefore, they can constitute a necessary and

complementary tool to classical statistics for the analysis of Functional Neuroimaging data in Disorders

of Consciousness.

The combination of behavioural assessments and functional neuroimaging form an extremely important and unique source of information, for both clinical use and the scientific study of consciousness.

The former is showing the thin line between consciousness and un-consciousness and the latter provides the means to explore it.

This thesis aims at providing tools to assist the behavioral diagnosis of consciousness using Machine Learning in functional neuroimaging data from patients with disorders of consciousness. The

studies composing it focused mainly on the two groups that are considered to lie on the border line

of responsiveness: i) Minimally Conscious State, and ii) Unresponsive Wakefulness State. Two different modalities, which capture different properties of brain function, have been used. At first we used

functional Magnetic Resonance Imaging, from which we extracted brain connectivity features. To those

features we applied machine learning techniques to identify the contribution of brain networks to the

classification of patients. In the second project, we used the metabolic activity of the brain extracted

from Positron Emission Tomography, to classify patients with brain lesions and extract regional information. We applied certain practices, in order to overcome problems such us noisy images, redundant

features and limited samples.

Both projects are highlighting these brain regions with the maximum contribution to the classification

process, assuming that they are significant to higher order cognitive functions, therefore shedding light

on the mechanistic counterpart of the phenomenon of consciousness

Autre version :
Fichiers :
Nom du fichier Taille Temps de chargement évalué (HH:MI:SS)
Modem 56K ADSL
[Public/Internet] cover.pdf 9.45 Mb 00:22:30 00:00:50
[Public/Internet] Thesis_Antonopoulos.pdf 7.42 Mb 00:17:39 00:00:39

Bien que le maximum ait été fait pour que les droits des ayants-droits soient respectés, si un de ceux-ci constatait qu'une oeuvre sur laquelle il a des droits a été utilisée dans BICTEL/e ULg sans son autorisation explicite, il est invité à prendre contact le plus rapidement possible avec la Direction du Réseau des Bibliothèques.

Parcourir BICTEL/e par Auteur|Département | Rechercher dans BICTEL/e

© Réseau des Bibliothèques de l'ULg, Grande traverse, 12 B37 4000 LIEGE